Attempt any three of the following problems, including problem n° 2. All rings are commutative with identity, and all ring morphisms take identity to identity.

Rings and modules

- 1. Define and construct the tensor product of modules. State its universal property.
 - (a) Define restriction and extension of scalars for modules. Let $A \to B$ be a ring morphism and let M be an A-module and N be a B-module. Show that there is a natural isomorphism of abelian groups

 $\operatorname{Hom}_B(B \otimes_A M, N) \cong \operatorname{Hom}_A(M, N).$

Is it an isomorphism of A-modules? Justify.

- (b) Let A be a ring and $A[X] \to A$ be the evaluation map at 0 (i.e., $f(X) \mapsto f(0)$), so that A is an A[X]-algebra. Is it true that $A \otimes_{A[X]} A \cong A$? Justify your claim.
- (c) Let A be an integral domain with quotient field K and let B be a K-algebra. Let $M = K \otimes_A B$, so M is an A-algebra, and by extension of scalars, a K-algebra as well. Is it always true that
 - i. $M \cong B$ considering both M and B as A-algebras?
 - ii. $M \cong B$ considering both M and B as K-algebras?

Give justifications.

2. Define Noetherian rings and modules.

- (a) Is it true that every subring of a Noetherian ring is Noetherian? Justify.
- (b) Let A be a ring, M be a Noetherian A-module and $I = \operatorname{Ann} M$ be the annihilator of M. Show that A/I is a Noetherian ring.
- 3. Let A be a ring. Define a short exact sequence of A-modules. When do we say that a short exact sequence 3+8+9 is split? Let

$$0 \longrightarrow L \xrightarrow{f} M \xrightarrow{g} N \longrightarrow 0$$

be a short exact sequence of A-modules.

(a) Let S be a multiplicative submonoid of A^* . Show that the sequence of A-modules

$$0 \longrightarrow S^{-1}A \otimes_A L \xrightarrow{1 \otimes f} S^{-1}A \otimes_A M \xrightarrow{1 \otimes g} S^{-1}A \otimes_A N \longrightarrow 0$$

is a short exact sequence. Here $1 \otimes f$ and $1 \otimes g$ are the A-linear morphisms induced by $(a/s, x) \mapsto (a/s) \otimes f(x)$ and $(a/s, x) \mapsto (a/s) \otimes g(x)$ respectively.

(b) Suppose L, M and N are free of finite rank. Prove that the induced sequence

$$0 \longrightarrow N^{\vee} \xrightarrow{g^*} M^{\vee} \xrightarrow{f^*} L^{\vee} \longrightarrow 0$$

is a split short exact sequence. Here $M^{\vee} = \operatorname{Hom}_A(M, A)$ etc.

- 4. Decide whether the following statements are true or false, with brief justifications (counterexamples, **20** proofs, or such and such a theorem implies this etc) (**any ten**):
 - (a) The polynomial ring $\mathbb{Z}[X]$ is isomorphic to the power series ring $\mathbb{Z}[[X]]$.
 - (b) Let A be a UFD. A power series $a_0 + a_1X + \cdots \in A[[X]]$ is irreducible in A[[X]] if and only if a_0 is irreducible in A.

1

- (c) The power series ring $\mathbb{Q}[[X]]$ is a PID.
- (d) The power series ring $\mathbb{Z}/25\mathbb{Z}[[X]]$ is a complete local ring.

=20

2+3+5 =10

- (e) Let $a_n = 5n$ if $5 \nmid n$ and $a_n = 2$ if $5 \mid n$. Then the Weierstrass degree of the power series $\sum_{n=1}^{\infty} a_n X^{n-1} \in \mathbb{Z}_{\langle 5 \rangle}[[X]]$ is 4 and its Weierstrass polynomial is $5 + 5X + 5X^2 + 5X^3 + X^4$.
- (f) If A is a subring of $\mathbb{Z}[X]$ which strictly contains \mathbb{Z} (i.e., $\mathbb{Z} \subseteq A \subset \mathbb{Z}[X]$), then $\mathbb{Z}[X]$ is a finitely generated A-module.
- (g) For any ring morphism $A \to B$, we have $A[X] \otimes_A B \cong B[X]$ as A-modules.
- (h) If A is a local ring, then $A[X]/\langle X^n \rangle$ is a local ring for each positive integer n.
- (i) For any positive integers m and n, $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Z}/m\mathbb{Z}, \mathbb{Z}/n\mathbb{Z}) \cong \mathbb{Z}/d\mathbb{Z}$ with $d = \operatorname{gcd}(m, n)$.
- (j) There is a \mathbb{Z} -module M such that the sequence $0 \to \mathbb{Z} \hookrightarrow \mathbb{R} \twoheadrightarrow M \to 0$ is split short exact.
- (k) In a short exact sequence of A-modules $0 \to M' \to M \to M'' \to 0$, if M' and M'' are finitely generated then so is M.
- (l) If S is a multiplicative subset of an integral domain A with $0 \notin S$, then $S^{-1}A$ is a local ring.
- (m) If I is an ideal of a Noetherian ring A, then A/I is a Noetherian ring.
- (n) The polynomial $X^3 + 2X + 1$ is irreducible in $\mathbb{Z}[X]$.

